Machine Learning with Python by Sai Sankalp

IBM Python Machine Learing certificate to Sai Sankalp

WHAT YOU WILL LEARN

  • Use Python external libraries to create and modify documents, images, and messages
  • Understand and use Application Programming Interfaces (APIs) to interact with web services
  • Understand and use data serialization to send messages between running programs
  • Build a solution using the skills you have learned

This course dives into the basics of machine learning using an approachable, and well-known programming language, Python.

In this course, we will be reviewing two main components: First, you will be learning about the purpose of Machine Learning and where it applies to the real world. Second, you will get a general overview of Machine Learning topics such as supervised vs unsupervised learning, model evaluation, and Machine Learning algorithms.

In this course, you practice with real-life examples of Machine learning and see how it affects society in ways you may not have guessed! By just putting in a few hours a week for the next few weeks, this is what you’ll get.

1) New skills to add to your resume, such as regression, classification, clustering, sci-kit learn and SciPy

2) New projects that you can add to your portfolio, including cancer detection, predicting economic trends, predicting customer churn, recommendation engines, and many more.

Introduction to Machine Learning

In this module, you will learn about applications of Machine Learning in different fields such as health care, banking, telecommunication, and so on. You’ll get a general overview of Machine Learning topics such as supervised vs unsupervised learning, and the usage of each algorithm. Also, you understand the advantage of using Python libraries for implementing Machine Learning models.

Regression

In this module, you will get a brief intro to regression. You learn about Linear, Non-linear, Simple and Multiple regression, and their applications. You apply all these methods on two different datasets, in the lab part. Also, you learn how to evaluate your regression model, and calculate its accuracy.

Classification

In this module, you will learn about classification technique. You practice with different classification algorithms, such as KNN, Decision Trees, Logistic Regression and SVM. Also, you learn about pros and cons of each method, and different classification accuracy metrics.

Clustering

In this module, you will learn about different clustering approaches. You learn how to use clustering for customer segmentation, grouping same vehicles, and also clustering of weather stations. You understand 3 main types of clustering, including Partitioned-based Clustering, Hierarchical Clustering, and Density-based Clustering.

Tags: Machine Learning with Python by Sai Sankalp Nangineni

Leave a Reply

Your email address will not be published. Required fields are marked *